

Appropriate Scale Mechanization Innovation Hub (ASMIH)-Bangladesh: A Sustainable Approach

Dr. Md. Monjurul Alam

Project Director, ASMIH-Bangladesh, and Professor, Bangladesh Agricultural University, Bangladesh

ASMIH-Bangladesh Virtual Annual Workshop 2020 September 23, 2020

Outline of the Presentation

- Context of Bangladesh agriculture
- Project objective and activity framework
- Key activities and achievements
- Sustainable impact strategies
- Urgent policy intervention

Context of Bangladesh Agriculture

Successes

- Bangladesh is the 4th largest rice producer, 3rd largest vegetable and inland water fish producer and 5th largest aquaculture fish producer in the world.
- Since independence, the production of paddy has increased over three folds (55.4 million tones in 2019; GIEWS-FAO, 2020) compared to double the population growth and attains self-sufficiency in paddy production.

Challenges

- Agricultural land is decreasing by 0.5% per year (FAO, 2014).
- On-farm labor employment was about 43% of rural labor force in 2017 and expected to be reduced to about 36% by 2020 and 20% by 2030 (FAOSTAT, 2017).
- There is potential yield gap between research and on-farm production.
- Harvesting and processing loss of paddy at farm level is about 14% of which harvesting loss is about 6%, (ASMIH, 2018).

Potential Solutions

 Appropriate scale mechanization of field crops would have been one of the potential solutions of the challenges.

Objective and Areas of Intervention

ASMIH-Bangladesh: October 2015 to September 2020

Overall Objective

To promote appropriate scale agricultural mechanization for sustainable intensification focusing on smallholder farmers' on-farm operations and to improve land and labor productivity in a sustainable manner, considering the social, economic and environmental impacts with special focus on the role of women.

Areas of Intervention

- Transplanting
- Harvesting
- Conservation agriculture

Activity Framework: A Sustainable Approach

Hub formation and Survey – Establish Hub, identify specific areas of mechanization, assessment and benchmarking; identify stakeholders and their capacity building

Engage partners and EPOs, Perform SWOT analysis, site visits and farm household survey

Year- 1

Assess –Technical & economic feasibility, robustness and end-users acceptance of identified technologies

Farmers' fields in different areas of southern delta

Year-2

"Scale-up" – Selected mechanized solutions to other areas of southern delta

Training, demonstration, piloting and service provider development

Year- 3

Policy and Sustainability of Hub – Advocacy and Seeking fund

Policy dialogue, workshops, symposiums, seek sources for funding

Year- 4

Rice Transplanting

Seedling Preparation

- Standardized methods of seedling raising
- Identified models of Rice Transplanter
- Developed Local Service Providers
- Developed women entrepreneurs in seedling raising business

Rice Transplanter

- Capacity: 0.17 ha/hr
- Field capacity: 72%
- ❖ Cost Saved over manual transplanting:
 30% with tray soodling

30% with tray seedling 48% with polythene mat seedling

- Market Price: USD 4700
- Payback period: 2 years

GIS mapping and Estimating Number of Transplanter

Assumptions

Capacity – 0.17 ha/hr Working hour in a day – 8 hrs Working days in season – 20 days

Boro

- Low land and fish farms (GHER) turned into rice land
- STW based irrigation availableAman
- Poor drainage
- Low land turned into fish farm

	Boro season			<i>Aman</i> season		
Description	Area	Percent of area (%)	No. of Transplaner required	Area	Percent of area (%)	No. of Transplanter required
Settlement	313.23	30.77		313.23	30.77	
Water Body	153.57	15.08		153.57	15.08	
Low crop land and fisheries	-	-	20	180.67	17.75	14
Crop land (suitable)	551.26	54.15		370.59	36.40	
Total	1018.06	100		1018.06	100	

Rice Harvesting

- Labor intensive and costly
- High harvesting loss
- Time consuming

- Low capacity
- Need threshing and cleaning
- Cannot harvest shattered crop

- Low capacity
- Low power & less robust
- High repair & maintenance cost
- Cannot harvest shattered crop

Best Solution

- Combine can harvest 100% shattered paddy
- o Operate in wet and 15 20 cm standing water
- Detect clogging using six sensors
- o Easy operation, adjustment and maintenance

Rice Harvesting

Reaper

- **❖** Capacity: 0.22 ha/hr
- ❖ Field efficiency: 65%
- Cost saved: 36% over manual harvesting
- **❖** Market Price: USD 2118
- **❖** Payback period: less than a year

Mini-Combine

- Capacity: 0.10 ha/hr
- ❖ Field efficiency: 55%
- Cost saved: 51% over manual harvesting
- **❖** Market Price: USD 8529
- Payback period: 2 years

YANMAR Combine

- **❖** Capacity: 0.45 ha/hr
- Cost saved over manual harvesting:
 - Cost saved: 60.98%
 - Loss saved: 4.74%
 - > Labor saved: 70%
- Market Price: USD 33333
- ❖ Payback period: less than 3 years

Rice Harvesting (BAU Reaper)

BAU-reaper has been modified and replicated at Mahbub Engineering Workshop, Jamalpur

Season	Location	Model	Forward speed, km/hr	Fuel Consumption I/ha	Effective field Capacity ha/hr	Field Efficiency %
Boro- 2019	Jamalpur	Diesel engine operated reaper	2.66	2.73	0.243	76.18
Aman- 2019	Jamalpur	Battery operated reaper	2.83	-	0.203	79.6

Diesel engine operated reaper

Battery operated reaper

GIS mapping and Estimating Number of Harvester

GIS map of Kulbaria-Boratia, Dumuria, Khulna, 2019

Land use	Area (ha)	Area (%)
Crop land (Paddy) (<i>Aman & Boro</i> , equal area)	702.37	70.71
Vegetable production	110.13	11.09
Water body (pond)	0.47	0.05
Settlement (Home & others)	180.33	18.15
Total	993.29	100.00

Based on 100% mechanical harvesting

- Number of reaper required 13 nos.
- Number of Mini-combine required 27 nos.
- Number of Combine required 7 nos.

Conservation Agriculture Seed Planter

- Three conservation tilling (zero, strip, reduced tillage) can be performed
- Tilling, seeding and covering of seed can be done simultaneously
- Suitable for multi-crop seeding i.e. wheat, maize, oilseeds, pulses, jute, sesame, etc.

Conservation Agriculture Seed Planter

Zero-till Planter

- ❖ Capacity: 0.1 ha/hr
- ❖ Field efficiency: 70%
- **❖** Cost saved: 65% over conv. planting
- ❖ Market Price: USD 470

Source: ASMIH-BD, 2019

Stripe-till Planter

- ❖ Capacity: 0.12 ha/hr
- ❖ Field capacity: 74%
- **❖** Cost saved: 50% over conv. planting
- **❖ Market Price: USD 553**

Source: ASMIH-BD, 2019

Bed Planter

- ❖ Capacity: 0.12 ha/hr
- **❖** Field efficiency: 72%
- **❖** Cost saved: 53% over conv. planting
- **❖ Market Price: USD 470**

Source: ASMIH-BD, 2019

Capacity Building Strategy

Capacity Building Materials Developed

- o Training manuals on Transplanting, Harvesting and CA planter
- o Business modules on Transplanting, Harvesting and CA planter
- o Leaflets on Transplanting, Harvesting and CA planter
- o Gender based technology profiles on Transplanting, Harvesting and CA planter
- o Videos on Transplanting, Harvesting and CA planter in Bangla with English sub-title

Harvesting video: https://www.youtube.com/watch?v=8usfOkFAdzE&t=3s

Transplanting video: https://www.youtube.com/watch?v=JbfiE1UY7iQ&t=68s

Seed Planter video: https://www.youtube.com/watch?v=Fui94AdAlzE&t=2s

Publication	Number
Journal Publication	12
MS thesis	4
Conference abstracts/papers	23
Presentation	22
Media/Blog article	3

Capacity building	No	Participant
Long term training Completed On-going	10	4 (MS) 3 (PhD), 3 (MS) ongoing
Training and demonstration	118	2024 (M), 476 (F)
Machinery fair	3	440(M), 232(F)
Workshop/Symposium	3	291 (M), 25 (F)

Training & Business modules and Technology Profiles

GENDER TECHNOLOGY ASSESSMENT Appropriate Scale Mechanization Consortium

BANGLADESH: SEED PLANTER

GENDER TECHNOLOGY ASSESSMENT Appropriate Scale Mechanization Consortium

BANGLADESH: RICE TRANSPLANTER

GENDER TECHNOLOGY ASSESSMENT
Appropriate Scale Mechanization Consortium

BANGLADESH: HARVESTING TECHNOLOGY

Copping with COVID-19 Pandemic

Training on RuralInvest Toolkit –July 26, 2020

Hands-on Training of Operators and Mechnanics -July 2020 (Khulna, Patuakhali, Barishal)

Helping Farmers during COVID-19 Pandemic, May 2020

https://postharvestinstitute.illinois.edu/admi-pandemic-response/?fbclid=IwAR0g2JgyxUGOwChr3OR3hJgM5Tf8dUVjve4oxk4p6dw-Y9mGSKQ6stVBIs

Ag. Engg. Course Update, July 2020

Sustainable Impact Strategy

Mapping of Collaborating Partners

Research

 Bangladesh Agricultural Research Institute (BARI)

Implementing Conservation Agriculture research as core partner

Public Sector

Department of Agricultural Extension (DAE)

- Collaborating in on-farm project activity implementation
- Implementing govt. subsidy program on agricultural mechanization

Private Sector

- ACI Motors Ltd. (National level machinery company, Dhaka)
- o The Metal Pvt. Ltd. (Dhaka)

- Provided machines for testing and field demonstration
- Nationwide marketing of agricultural machines
- Mobilizing resources for research and development

Mahbub Engineering (Jamalpur)

- Collaborating in Design and Modification of BAU-Reaper
- Marketing of modified engine and battery powered BAU-Reapers

Sustainable Impact Strategy

Entrepreneurship Development and Long-term Mentoring

Mizanur Rahman, Dumuria, Khulna

Transplanter

- o Khulna 2
- o Barishal 1
- o Noakhali 1
- o Patuakhali 3

Mini-combine

- o Khulna 2
- o Barishal -1

Reaper

- o Khulna 3
- o Noakhali 5
- o Barishal 4
- o Patuakhali- 4

Seed planter

Four locations -19

Kamal Uddin, Shubarnachar, Noakhali

Sustainable Impact Strategy

Policy Advocacy: Shifting focus from Mini-combine to Combine harvester

Urgent Policy Intervention

- Capacity building of Local Service Providers (LSPs), operators, mechanics and local workshops on operation, maintenance and business management of agricultural machinery.
- Season long mentoring of Local Service Providers of agricultural machinery.
- Introducing and strengthening agricultural mechanization diploma and courses at Poly-technique Institutes, Technical School and Colleges (TSC) and Technical Training Centers (TTC).
- Prompt and effective after-sales services to be made mandatory to the machinery marketing companies.
- Nationwide GIS mapping for identifying machine intervention and service mobilization strategies.
- Clear instruction to public and private sector commercial banks for disbursing at least 15% of agricultural credits to agricultural machinery.
- Immediate recruitment of Agricultural Engineers in the Department of Agricultural Extension (DAE) for effective and successful implementation of agricultural mechanization strategy of the government of Bangladesh.

Acknowledgement

E-mail: mmalam.bau@gmail.com